Architecture Synthesis and Partitioning of Real-Time Systems:
A Comparison of Three Heuristic Search Strategies

Jakob Axelsson
Dept. of Computer and Information Science
Link&ping University
S-581 83 Linkoping, Sweden
Email: jakax @ida.liu.se

Abstract

This paper studies the problem of automatically selecting
a suitable system architecture for implementing a real-time
application. Given a library of hardware components, it is
shown how an architecture can be synthesized with the goal
of fulfilling the real-time constraints stated in the system's
specification. In case the selected architecture contains sev-
eral processing units, the specification is partitioned by as-
signing tasks to these. The use of three heuristic search
techniques is investigated: genetic algorithms, simulated
annealing, and tabu search; and it is described how these
can be adapted to the architecture synthesis problem. It is
concluded that tabu search is the most promising technique,
but that simulated annealing is also applicable.

1 Introduction

When a real-time system is constructed, one of the most
important design goals is to ensure that its timing con-
straints are fulfilled. These are imposed by the environment
in which the system is embedded, and they typically place
limits (expressed as deadlines) on the system's response
time to certain events taking place in the environment. The
quality of the system, i.e. its cost and its ability to reach the
deadlines, depends to a large degree on certain early imple-
mentation decisions. The designer has to choose a suitable
system architecture, and often, it might be advantageous to
use a combination of application-specific integrated circuits
(ASICs) and software running on standard microprocessors.
It must also be decided how the resources of that architec-
ture are to be shared between the system's tasks. This de-
cision includes a partitioning of the functionality onto the
components of the architecture.

In this paper, we study the automatic synthesis of an ar-
chitecture from a real-time system's specification, and the

0-8186-7895-X/97 $10.00 © 1997 IEEE

partitioning of the system's tasks on the processors and
ASICs of that architecture. It is extremely time consum-
ing to find optimal solutions to such problems, and there-
fore we have to resort to heuristic search techniques. There
are three well-known such techniques—genetic algorithms
(GA), simulated annealing (SA), and tabu search (TS)—
that have previously been used on similar problems. To de-
termine which of these algorithms is the most suitable for
our problem, we have conducted a comparative study in-
volving all three of them.

The paper is organized as follows: The next section de-
scribes some related work and Section 3 defines the exact

. problem that we have studied, and proposes a suitable de-

sign environment. Section 4 shows how the three search
techniques were adapted to the architecture synthesis prob-
lem and Section 5 reports the experimental results obtained.
Finally, in Section 6 the conclusions are summarized, and
some indications of future work are given. Due to the lim-
ited space, only a condensed account of the project can be
given here, and the reader is referred to [3] for more details.

2 Related work

The synthesis of system architectures has been studied
by several researchers before. Prakash and Parker [12] de-
scribe an algorithm for selecting processors to be used in
a multiprocessor system, and for partitioning. It assumes
that all processor nodes contain a local memory, and are
connected through direct point-to-point channels. The al-
gorithm does not consider real-time constraints.

Buchenrieder and Pyttel [4] use knowledge-based tech-
niques for selecting components from a component library,
and for deciding on how to connect them. The designer
decides interactively on things like which processor to use,
and what clock frequency the system should have. The de-
sign goal is unclear, but presumably it does not include sat-
isfaction of real-time constraints.

In hardware/software codesign, most researchers con-
centrate on how to partition a specification on a fixed ar-
chitecture, in order to reach a maximal speedup, but some
work has also been done on partitioning with respect to tim-
ing constraints, especially by Wolf's group (see e.g. [10]).

Some of the heuristic search algorithms have previous-
ly been applied to the partitioning problem. Eles et al. [5]
compare the use of SA and TS for partitioning a graph into
hardware and software parts while trying to reduce com-
munication and synchronization between the parts, and it is
concluded that TS is vastly superior to SA for this problem.

Ernst er al. [6] also do hardware/software partitioning
using SA, but on a finer level than the previous reference.
The target architecture consists of a processor and an ASIC
which acts like a coprocessor. The design goal is to achieve
a maximum average speedup under given cost constraints,
so real-time issues are not considered.

Finally, Tindell ez al. [13] use SA for assigning tasks of a
real-time system to processors in a distributed architecture.
The goal is to allocate the tasks in such a way that their
deadlines are met, while not exceeding the capacity of the
distribution network.

The principal contributions of this paper are:

¢ Ituses heuristic search algorithms for concurrent archi-
tecture selection and partitioning, and compares GA,
SA, and TS for this problem.

e It considers real-time applications, with the explicit
goal of producing an implementation which reaches all
deadlines at a minimal cost.

o It allows any mixture of processors and ASICs in the
architecture.

3 Problem description

As mentioned above, the goal of this work is to find
methods for providing an implementation of a real-time sys-
tem. This implementation should guarantee the timing con-
straints stated in the specification, while incurring a mini-
mal hardware cost. The main entities of our approach are:

Behavioural specification. The process of finding an
implementation starts with a detailed behaviour that con-
sists of a set B = {71,...,%n} of parallel tasks, with dead-
lines and maximal activation rates specified.

Component library and models. The hardware com-
ponents that can be used in the architecture are given in a
component library containing microprocessors, ASICs (and
other custom hardware devices such as FPGAs), memories,
and instruction caches. Buses are implicit in the architec-
ture, and therefore not included in the library. The executing
components, i.e. the processors and ASICs, will be referred

162

to as processing units. The library also contains estima-
tion models for performance, size, and cost for the different
components, and for this study we have used rather simple
models. The microprocessor execution time and memory
usage were estimated using techniques described in 1], the
ASIC models were based on [11], and the caches were mod-
eled by a single number indicating the hit ratio.

Virtual prototypes. During the design, the current sta-
tus of implementation is captured using a virtual prototype
(VP), which consists of: the behaviour; an architecture; a
partitioning which assigns tasks to processing units; and a
schedule which determines how processors and memories
are time-shared by the tasks. In the applications we are cur-
rently studying, there is some data common to all the tasks,
and the architectures must therefore always contain a shared
data memory connected to all processing units.

Task scheduling. We assume that access to shared mem-
ories and processors is scheduled using a fixed-priority pol-
icy. The priorities can be selected either according to the
deadline-monotonic scheduling (DMS), which is optimal
for single-processor systems and which is calculated once
and for all, since it does not depend on the implementation;
or the optimal order can be calculated [2], which has to be
done every time the design is changed. The complexity of
the optimal priority assignment is O(|B|%). We will see later
that the choice of priority order has a high impact on the re-
sulting architecture. It is necessary to consider the schedul-
ing, because it is otherwise not possible to check if the tim-
ing constraints are met in case of resource contention. The
scheduling analysis can also be used to calculate the mini-
mal required speedup (MRS) [2} which indicates how much
the implementation would need to be accelerated in order to
fulfil the timing constraints, thus it is a measurement of the
distance to a satisfactory solution.

Quality criterion. During the search we need a quality
function, which maps any VP onto a real number according
to the following principles:

e A VP which fulfils the timing constraints has higher
quality than one which does not;

o For two VPs that both meet the deadlines, the one with
lower cost has higher quality;

o For two VPs that do not meet the deadlines, the cost
and the MRS are combined into a single quality value.

A mathematical formulation is given in [3].

Transformations. The design proceeds by iteratively
applying transformations which guarantee the VP's struc-
tural consistency. The transformations we use are:

® Move task from one processing unit to another.

e Reconnect component by connecting one of its ports to
another component in the architecture.

Behavioural
specification

Transformation

Search Component
algorithm library
A
Quality
criterion

Implementation

Figure 1. Overview of codesign environment.

o Split processing unit by inserting a new processing unit
and moving some tasks to it from the old.

e Merge processing units by moving all tasks from one
processing unit to another.

e Add storage, i.e. insert a new cache or memory.

e Replace component by an equivalent one (i.e. a pro-
cessor by a different processor etc.) without changing
the topology.

o Cleaning, by which unused components (such as pro-
cessing units with no tasks) are removed. This trans-
formation is always applied after one of the others,
thereby avoiding the need for a remove transformation.

By restricting ourselves to such a limited set of opera-
tions, it becomes easy to verify the correctness of the search
algorithms. Fig. 1 shows a codesign environment based on
iterative transformation of virtual prototypes.

4 Applying the search algorithms

We will now briefly describe the three search algorithms,
and show how they were adapted to our problem. To make
the comparison fair, we have tried to use common parts
whenever possible, and this includes the transformations as
well as a procedure for generating random initial solutions.

4.1 Simulated annealing

Simulated annealing [9] is inspired by an annealing pro-
cess, where matter is first melted, and then slowly cooled
in a controlled way to obtain a certain arrangement of the
atoms. When the temperature is high, atoms can occasion-
ally move to states with higher energy, but then, as the tem-
perature drops, the probability of such moves is reduced.

In the optimization procedure, the energy of the state
corresponds to its inverse quality function value, and the

163

temperature becomes a control parameter which is reduced
during the execution of the algorithm. A neighbour of the
current solution (i.e. in our case a VP which can be reached
by applying one of the transformations) is randomly chosen
in each iteration, and in case it is better than the current, the
algorithm accepts to move to it. If it is worse, then the move
is still taken with a probability determined by the difference
in quality and the current temperature. During early itera-
tions, there is a high probability to accept worse solutions,
but as the temperature drops, acceptance becomes less and
less likely. In this way, the algorithm behaves much like a
random walk during early stages, while it performs almost
a hill-climbing as the temperature drops towards zero.

4.2 Genetic algorithms

Genetic algorithms [8] are inspired by how changes in
the chromosomes are made in nature to adapt a species to
changes in the environment. Like its natural counterpart the
GA is defined using the concepts of crossover, mutation,
and selection based on survival of the fittest. The algorithm
keeps a population of individuals, which represent a subset
of the search space, and in each iteration, some of the in-
dividuals are replaced by new ones. These are created by
selecting pairs of individuals from the previous population,
where the probability of being selected increases propor-
tionally with the individual's quality. The two selected in-
dividuals are cut up in two at a random point, and then one
part of them is swapped between the individuals to create
two new ones. For VPs, the crossover consists of selecting a
number of processing units from each parent, and exchang-
ing these to create two new solutions. Caches, separate
memories, and the allocated tasks might follow the process-
ing units in the swap. (In practice, the exact rules for doing
this without creating any inconsistencies become rather in-
tricate.) Fig. 2 illustrates the crossover of two VPs (the up-
per ones), where the dotted rectangles indicate the parts that
are exchanged. (Since no component is connected to Mem?2
after the swap, it is removed by the cleaning.) Finally, some
random changes are done to the new individuals, which cor-
responds to a mutation. For the VPs, this is implemented as
a random application of some of the transformations, e.g.
task movement, or component replacement. (A GA which
works on arbitrary data structures, rather than just bit-string
chromosomes, is sometimes called an evolution program.)

4.3 Tabu search

Tabu search [7] is an iterative heuristic where long and
short term memories are used to make the search more ef-
ficient. In this work., we only used the short term memo-
ry, which ensures that a recent step is not nullified while
traversing the search space. The memory is implemented as

- ' ¥ v HI
E Proct -?—{ Mem2| i Asic2 :
L m T KRR
[l ¢ 1 :
[l ¥ 1
‘| Proc2 —{—ml—- ‘| Proc3 I
1 1
Vo m o om = =1 1o e e -t
Asic1 Asic3
g v T4 v
Mem1 |Mem3
Asic2 Proci
Ty Ty T3 T T
Proc_|—] Cache | Proc2
Ty 13 s
Asict Asic3
Ts v Ty Vo

Figure 2. Crossover between two VPs.

a tabu list, which indicates whether a move is disallowed.
It has a fixed length n, which is also the number of itera-
tions a tabu remains in effect. In some situations it might
be sensible to override a tabu, and allow the move. This is
determined by an aspiration criterion, and we have used a
very simple such: a suggested solution which breaks a tabu
is accepted if it is better than the best solution found so far.

In each iteration, k elements of the neighbourhood of the
current solution is examined, and the best non-tabu element
in that set is selected as the next element. The neighbour-
hood list must be constructed using heuristics which con-
sciously try to find those elements in the entire neighbour-
hood that are most likely to lead to the optimum. There are
no random factors involved in the selection of the move. We
picked the k neighbours to consider using two approaches
depending on the current solution:

o If the deadlines are not met, the algorithm tries neigh-
bours which increase the capacity, by moving tasks,
splitting processing units, introducing caches, etc.

¢ If the deadlines are met, the algorithm tries to reduce
the cost, by merging processing units, replacing com-
ponents with cheaper ones, etc.

After the selection is made, the tabu list is updated to
prevent the move from being undone.

4.4 Comparison

The three search algorithms traverse the search space in
rather different ways. TS and SA move sequentially, al-
ways selecting a neighbour of the current solution, whereas

164

GA covers a large number of points in parallel, and makes
long leaps between them. On the other hand, SA and GA
progress randomly, while TS is totally deterministic.

The effort to implement GA was considerably larger than
for SA and TS, due to the complexity of the crossover op-
eration. GA also has a disadvantage in that it needs to store
information about a large number (sometimes several hun-
dreds) of solutions, whereas SA and TS only store a few.

5 Experimental results and discussion

To compare the three search techniques, we conducted a
large set of experiments with all three of them. First, we had
to determine suitable parameter values for the algorithms.
This includes things like starting temperature and temper-
ature decrease factor for SA; probability of crossover and
mutation for GA; and size of tabu list and neighbourhood
for TS. Since the algorithms are partly random, the same
experiments had to be repeated many times to determine
their average results. For the comparison to be fair, the al-
gorithms should be granted approximately the same execu-
tion time, and we therefore limited the number of generated
VPs to 3,000 in each run. The component library we used
contained three microprocessors, three ASICs (differing in
maximal area), three caches, and one memory, which gives
room for many different cost/performance trade-offs.

To investigate the importance of the behavioural speci-
fication's structure, we used a set of synthetic benchmarks,
where the tasks were described as a vector which captured
its important characteristics (size, execution time on dif-
ferent processing units, etc.). In this way, the experiments
could be controlled to make sure that sufficiently different
behaviours were covered. To validate the entire approach,
including estimators, we also conducted a case study, in
which architectures were generated for a packet switch (see
[1]). All the examples were large enough to call for non-
trivial architectures, i.e. more than one processing unit.

Table 1 summarizes the experiments for the synthetic
benchmarks using optimal scheduling, and for the switch
using both optimal scheduling and DMS. The two figures
in each cell indicates the average cost of the best feasible
solutions found (i.e. solutions that do not break any con-
straints), and the average number of iterations needed to find
them. Feasible solutions were found in all runs, except for
synt2, where GA succeeded in 20% of the runs, TS in 90%,
and SA in all. The main findings of the experiments were:

o All the algorithms managed to find feasible solutions
in almost all the experiments, even when the con-
straints were very tight.

¢ SA and TS found solutions with similar quality, with
SA slightly better for the synthetic benchmarks and TS
superior for the switch. GA was always clearly worse.

| Name /#itasks [GA | SA | TS
syntl /6 788.6 546.2 716.9
1510 1875 422

synt2 /12 1450.0 | 1334.3 | 1398.5
2710 2199 1377

synt3/6 1147.6 | 937.8 989.8
662 1993 528

synt4 /9 1370.7 | 1231.0 | 1255.3
1518 2335 1113

switch/ 12 8434 | 7926 | 7592
(opt. sched.) 535 1902 752
switch / 12 841.1 824.9 804.2
(DMS) 245 1995 584

Table 1. Summary of experimental resulits.

e TS came to good solutions much faster than SA, and
had the maximal number of iterations been more lim-
ited, the TS would have been superior in quality.

For the switch, a more detailed study was performed,
comparing the results when using optimal scheduling to
those for DMS, and it can be seen that using the optimal
scheduling generated results that were clearly superior (for
SA and TS). A closer study revealed that this was due to
the fact that the optimal scheduling can (in practice, and not
only in theory) meet the deadlines for many partitions on
architectures with several processing units, for which the
DMS was not feasible. This motivates the use of optimal
scheduling during architecture synthesis, even though it im-
plicates a longer algorithm execution time.

We also compared the algorithms' results with the opti-
mal implementation for the switch, which was determined
through exhaustive search. This implementation consisted
of the cheapest processor, the most expensive ASIC, and the
shared memory, and had a cost of 752.7. It was found no
less than 13 out of 15 times by TS using optimal scheduling
(but never by SA), which indicates that TS also was able to
find very good partitions for the architectures it generated.

6 Conclusions and future work

In this paper, we have studied the use of three heuris-
tic algorithms for automatic synthesis of architectures for
real-time systems. Our experiments show that tabu search
and simulated annealing can both be applied to this prob-
lem, whereas genetic algorithms are less suitable, due to the
difficulty in defining a reasonable crossover operation.

The tabu search algorithm that we used was very simple,
and it is our intention to include more advanced features of
the algorithm, such as a long term memory, which can be
used to intensify and diversify the search, thereby making

165

it even more efficient. Due to these possibilities of further
improvement, and its superior search speed, we judge TS to
be the most promising technique for this problem, although
SA is also applicable.

Another possibility of improvement is the estimation
models, which are not very accurate today, in particular for
ASICs. Since estimators are crucial for any work in code-
sign, we expect to see considerable progress in this arca
within the near future. Finally, we will also remove some re-
strictions from the behavioural specifications, to better han-
dle inter-task communication, and this will entail develop-
ment of new schedulability analysis models.

References

[1] J. Axelsson. Schedulability-driven partitioning of hetero-
geneous real-time systems. Licentiate Thesis No. 517,
Link&ping University, 1995.

J. Axelsson. Hardware/software partitioning aiming at ful-
filment of real-time constraints. Journal of Systems Archi-

_ tecture, 42(6-7):449-464, 1996.

J. Axelsson. Three search strategies for architecture syn-
thesis and partitioning of real-time systems. Technical Re-
port LiTH-IDA-R-96-32, Dept. of Computer and Informa-
tion Science, Linkoping University, 1996. (Available from
http://www.ida.liu.se/publications/techrep/)
K. Buchenrieder and A. Pyttel. System zur wissensbasierten
Konfigurierung von Leiterplatten. CADS, 92(1):52-59,
1992,

P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli. System
level hardware/software partitioning based on simulated an-
nealing and tabu search. To appear in Design Automation

for Embedded Systems, 1997.

R. Emst, J. Henkel, and T. Benner. Hardware-software
cosynthesis for microcontrollers. IEEE Design & Test of
Computers, 10(4):64-75, Dec. 1993.

F. Glover, E. Taillard, and D. de Werra. A user's guide to
tabu search. Annals of Operations Research, 41:3-28, 1993,
D. E. Goldberg. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wesley, 1989.

S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimiza-
tion by simulated annealing. Science, 220(4598):671-680,
May 1983.

C. Lee, M. Potkonjak, and W. Wolf. System-level synthesis
of application specific systems using A* search and gener-
alized force-directed heuristics. In Proc. 9th International
Symposium on System Synthesis, pages 90-95, 1996.

S. Narayan and D. D. Gajski. Area and performance esti-
mation from system-level specification. Technical Report
ICS-92-16, University of California, Irvine, 1992,

S. Prakash and A. C. Parker. SOS: Synthesis of application-
specific heterogeneous multiprocessor systems. Journal of
Parallel and Distributed Computing, 16:338-351, 1992.

K. W. Tindell, A. Burns, and A. Wellings. Allocating hard
real-time tasks: An NP-hard problem made easy. Real-Time
Systems, 4(2):145-165, 1992.

(2]

[3]

[4]

(5]

(6]

{7
(8]
[9]

(10}

{11]

[12]

[13]

